skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "El-Naggar, Susan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ear recognition has its advantages in identifying non-cooperative individuals in unconstrained environments. Ear detection is a major step within the ear recognition algorithmic process. While conventional approaches for ear detection have been used in the past, Faster Region-based Convolutional Neural Network (Faster R-CNN) based detection methods have recently achieved superior detection performance in various benchmark studies, including those on face detection. In this work, we propose an ear detection system that uses Faster R-CNN. The training of the system is performed on two stages: First, an AlexNet model is trained for classifying ear vs. non-ear segments. Second, the unified Region Proposal Network (RPN) with the AlexNet, that shares the convolutional features, are trained for ear detection. The proposed system operates in real-time and accomplishes 98 % detection rate on a test set, composed of data coming from different ear datasets. In addition, the system's ear detection performance is high even when the test images are coming from un-controlled settings with a wide variety of images in terms of image quality, illumination and ear occlusion. 
    more » « less